首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7269篇
  免费   605篇
  国内免费   650篇
  2023年   116篇
  2022年   111篇
  2021年   143篇
  2020年   237篇
  2019年   247篇
  2018年   226篇
  2017年   278篇
  2016年   258篇
  2015年   226篇
  2014年   270篇
  2013年   503篇
  2012年   236篇
  2011年   342篇
  2010年   224篇
  2009年   382篇
  2008年   410篇
  2007年   384篇
  2006年   316篇
  2005年   337篇
  2004年   293篇
  2003年   243篇
  2002年   225篇
  2001年   197篇
  2000年   219篇
  1999年   176篇
  1998年   145篇
  1997年   146篇
  1996年   137篇
  1995年   119篇
  1994年   134篇
  1993年   141篇
  1992年   132篇
  1991年   119篇
  1990年   115篇
  1989年   94篇
  1988年   62篇
  1987年   69篇
  1986年   50篇
  1985年   71篇
  1984年   83篇
  1983年   36篇
  1982年   65篇
  1981年   49篇
  1980年   50篇
  1979年   30篇
  1978年   24篇
  1977年   24篇
  1976年   14篇
  1975年   5篇
  1973年   4篇
排序方式: 共有8524条查询结果,搜索用时 109 毫秒
41.
42.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   
43.
Abstract The 1.2-kb DNA fragment upstream of the linked β- hbd (3-hydroxybutyryl-CoA dehydrogenase) and adh1 (NADPH-dependent alcohol dehydrogenase) genes from Clostridium acetobutylicum P262 was sequenced. The upstream region contained an open reading frame (ORFB) which was found to have 44% amino acid identity to the fixB gene products of yRhizobium and Azorhizobium . The β- hbd and ORFB genes were expressed during the acidogenic and solventogenic phases. The β- hbd gene was transcribed on a single mRNA species of 2.0 kb, whereas the ORFB gene was transcribed on two species of mRNA of 2.0 and 3.5 kb, respectively. The adh1 gene was induced or derepressed at the pH breakpoint before the onset of solventogenesis and was transcribed on a single species of mRNA of 2.4 kb.  相似文献   
44.
Two new sesquiterpenoids (1 and 2) and a new ent-pimarane type diterpenoid (3), together with eighteen known compounds (421), were isolated from the whole plants of Siegesbeckia pubescens. The structures of the new compounds were determined on the basis of 1D-, 2D NMR and HRESIMS data. All compounds were evaluated for their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages. Of these, highly oxygenated germacrane type sesquiterpenoids (12 and 1314) showed significant inhibitory effects with IC50 values ranging from 3.9 to 16.8 μM.  相似文献   
45.
46.
《Global Change Biology》2017,23(11):4946-4957
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in‐field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in‐field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.  相似文献   
47.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
48.
Facultative joint colony founding by social insects (pleometrosis) provides an outstanding opportunity to analyze the costs and benefits of sociality. Pleometrosis has been documented for a range of social insects, but most studies on the adaptive benefits of this behavior are restricted to the Hymenoptera. In this study, we provide the first analysis of costs and benefits associated with pleometrosis for Australian Dunatothrips, which form domiciles by glueing together phyllodes (leaves) of their Acacia host plant. In Dunatothrips aneurae, the distribution of foundress numbers per nest indicated that females formed associations non-randomly. Furthermore, average group size was independent of both the number of foundresses on the host plant and the number of mature colonies, suggesting that this behavior was not simply a response to limited availability of nesting sites. Although per capita reproduction declined with increasing group size, we also identified two benefits of pleometrosis: (1) individual foundresses in groups had higher survival than solitary foundresses during the brood development period, and (2) larger colony sizes resulting from pleometrosis provided a benefit later in colony development, because a higher proportion of D. aneurae adults survived invasions by the kleptoparasite Xaniothrips mulga when colony size was larger. These results demonstrate that the reproductive costs of pleometrosis are at least partially counterbalanced by survival benefits. Received 4 April 2006; revised 9 September 2006; accepted 20 September 2006.  相似文献   
49.
The functional and numerical responses of grazers are key pieces of information in predicting and modeling predator–prey interactions. It has been demonstrated that exposure to toxic algae can lead to evolved resistance in grazer populations. However, the influence of resistance on the functional and numerical response of grazers has not been studied to date. Here, we compared the functional and numerical responses of populations of the copepod Acartia hudsonica that vary in their degree of resistance to the toxic dinoflagellate Alexandrium tamarense. In common environment experiments carried out after populations had been grown under identical conditions for several generations, female copepods were offered solutions containing different concentrations of either toxic A. tamarense or the non-toxic green flagellate Tetraselmis sp. ranging from 25 to 500 μgC L−1, and ingestion and egg production rates were measured. Throughout most of the range of concentrations of the toxic diet, copepod populations that had been historically exposed to toxic blooms of Alexandrium exhibited significantly higher ingestion and egg production rates than populations that had little or no exposure to these blooms. In contrast, there were no significant differences between populations in ingestion or egg production for the non-toxic diet. Hence, the between population differences in functional and numerical response to A. tamarense were indeed related to resistance. We suggest that the effect of grazer toxin resistance should be incorporated in models of predator and toxic prey interactions. The potential effects of grazer toxin resistance in the development and control of Alexandrium blooms are illustrated here with a simple simulation exercise.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号